62 research outputs found

    Evidence for Blue Straggler Stars Rejuvenating the Integrated Spectra of Globular Clusters

    Full text link
    Integrated spectroscopy is the method of choice for deriving the ages of unresolved stellar systems. However, hot stellar evolutionary stages, such as hot horizontal branch stars and blue straggler stars (BSSs), can affect the integrated ages measured using Balmer lines. Such hot, "non-canonical" stars may lead to overestimations of the temperature of the main sequence turn-off, and therefore underestimations of the integrated age of a stellar population. Using an optimized Hbeta index in conjunction with HST/WFPC2 color-magnitude diagrams (CMDs), we show that Galactic globular clusters exhibit a large scatter in their apparent "spectroscopic" ages, which does not correspond to that in their CMD-derived ages. We find for the first time that the specific frequency of BSSs, defined within the same aperture as the integrated spectra, shows a clear correspondence with Hbeta in the sense that, at fixed metallicity, higher BSS ratios lead to younger "apparent" spectroscopic ages. Thus, the specific frequency of BSSs in globular clusters sets a fundamental limit on the accuracy for which spectroscopic ages can be determined for globular clusters, and maybe for other stellar systems like galaxies. The observational implications of this result are discussed.Comment: 5 pages, 2 figures, 1 table. Accepted for publication in ApJ

    J-PLUS : the Javalambre Photometric Local Universe Survey

    Get PDF
    The Javalambre Photometric Local Universe Survey (J-PLUS ) is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern Hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrofísico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg2 mounted on a telescope with a diameter of 83 cm, and is equipped with a unique system of filters spanning the entire optical range (3500–10 000 Å). This filter system is a combination of broad-, medium-, and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700–4000 Å Balmer break region, Hδ, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizing stellar types and delivering a low-resolution photospectrum for each pixel of the observed sky. With a typical depth of AB ∼21.25 mag per band, this filter set thus allows for an unbiased and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photospectral information for all resolved galaxies in the local Universe, as well as accurate photo-z estimates (at the δ z/(1 + z)∼0.005–0.03 precision level) for moderately bright (up to r ∼ 20 mag) extragalactic sources. While some narrow-band filters are designed for the study of particular emission features ([OII]/λ3727, Hα/λ6563) up to z <  0.017, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby Universe (Milky Way structure, globular clusters, 2D IFU-like studies, stellar populations of nearby and moderate-redshift galaxies, clusters of galaxies) and at high redshifts (emission-line galaxies at z ≈ 0.77, 2.2, and 4.4, quasi-stellar objects, etc.). With this paper, we release the first ∼1000 deg2 of J-PLUS data, containing about 4.3 million stars and 3.0 million galaxies at r <  21 mag. With a goal of 8500 deg2 for the total J-PLUS footprint, these numbers are expected to rise to about 35 million stars and 24 million galaxies by the end of the survey

    The Globular Cluster System of the Virgo Dwarf Elliptical Galaxy VCC 1087

    Full text link
    We have analysed the globular cluster (GC) system of the nucleated dwarf elliptical galaxy VCC 1087 in the Virgo cluster, based on Keck/LRIS spectroscopy and archival HST/ACS imaging. We estimate VCC 1087 hosts a total population of 77+/-19 GCs, which corresponds to a relatively high V-band specific frequency of 5.8+/-1.4. The g-z color distribution of the GCs shows a blue (metal-poor) peak with a tail of redder (metal-rich) clusters similar in color to those seen in luminous ellipticals. Spectroscopy of a subsample of 12 GCs suggests that the GC system is old and coeval (~10 Gyr), with a fairly broad metallicity distribution (-1.8<[m/H]<-0.8). In contrast, an integrated spectrum of the underlying galaxy starlight reveals that its optical luminosity is dominated by metal-rich, intermediate-aged stars. Radial velocities of the GCs suggest rotation close to the major axis of the galaxy, and this rotation is dynamically significant with (v/sigma)^* >1. A compilation of the kinematics of the GC systems of 9 early-type galaxies shows surprising diversity in the v/sigma parameter for GC systems. In this context, the GC system of VCC 1087 exhibits the most significant rotation to velocity dispersion signature. Modeling the velocity dispersion profile of the GCs and galaxy stars suggest fairly constant mass-to-light ratios of ~3 out to 6.5 kpc. The present observations can entertain both baryonic and non-baryonic solutions, and GC velocities at larger radii would be most valuable with regard to this issue. We discuss the evolution of VCC 1087 in terms of the galaxy ``harassment'' scenario, and conclude that this galaxy may well be the remains of a faded, tidally perturbed Sc spiral [abridged].Comment: 17 pages, 13 figures, to appear in the A

    Using spectroscopic data to disentangle stellar population properties

    Get PDF
    It is well known that, when analyzed in the light of current synthesis model predictions, variations in the physical properties of single stellar populations (e.g. age, metallicity, initial mass function, element abundance ratios) may have a similar effect in their integrated spectral energy distributions. The confusion is even worsened when more realistic scenarios, i.e. composite star formation histories, are considered. This is, in fact, one of the major problems when facing the study of stellar populations in star clusters and galaxies. Typically, the observational efforts have aimed to find the most appropriate spectroscopic indicators in order to avoid, as far as possible, degeneracies in the parameter space. However, from a practical point of view, the most suited observables are not, necessarily, those that provide more orthogonality in that parameter space, but those that give the best balance between parameter degeneracy and sensitivity to signal-to-noise ratio per Angstrom, S/N(Angstrom). In order to achieve the minimum combined total error in the derived physical parameters, this work discusses how the functional dependence of typical line-strength indices and colors on S/N(Angstrom) allows to define a suitability parameter which helps to obtain more realistic combinations of spectroscopic data. As an example, we discuss in more detail the problem of breaking the well known age-metallicity degeneracy in relatively old stellar populations, comparing the suitability of different spectroscopic diagrams for a simple stellar population of solar metallicity and of 12 Gyr in age

    Evidence for the disky origin of luminous Virgo dwarf ellipticals from the kinematics of their globular cluster systems

    Full text link
    We report evidence for dynamically significant rotation in the globular cluster systems of two luminous Virgo dwarf ellipticals, VCC1261 and VCC1528. Including previous results for VCC1087, the globular cluster systems of all three Virgo dwarf ellipticals studied in detail to date exhibit v_rot/sigma > 1. Taking the rotation seen in the globular clusters as maximal disk rotation, we find all three dEs lie on the r-band Tully-Fisher relation. We argue that these data support the hypothesis that luminous dEs are the remnants of transformed disk galaxies. We also obtained deep, longslit data for the stars in VCC1261 and VCC1528. Both these galaxies show rapid rotation in their inner regions, with spatial scales of ~0.5 kpc. These rotation velocities are similar to those seen in the GC systems. Since our longslit data for Virgo dEs extend out to 1-2 effective radii (typical of deep observations), whereas the globular clusters extend out to 4--7 effective radii, we conclude that non-detections of rotation in many luminous dEs may simply be due to a lack of radial coverage in the stellar data, and that globular clusters represent singularly sensitive probes of the dynamics of dEs. Based on these data, we suggest that gas disks are significant sites of globular cluster formation in the early universe.Comment: To appear in the AJ, corrected typographical errors in Table 1, added a referenc

    Mild Velocity Dispersion Evolution of Spheroid-like Massive Galaxies since z~2

    Full text link
    Making use of public spectra from Cimatti et al (2008), we measure for the first time the velocity dispersion of spheroid-like massive (M_star ~ 10^11 M_sun) galaxies at z ~ 1.6. By comparing with galaxies of similar stellar mass at lower redshifts, we find evidence for a mild evolution in velocity dispersion, decreasing from ~240 km/s at z ~ 1.6 down to ~180 km/s at z ~ 0. Such mild evolution contrasts with the strong change in size (a factor of ~4) found for these type of objects in the same cosmic time, and it is consistent with a progressive larger role, at lower redshift, of the dark matter halo in setting the velocity dispersion of these galaxies. We discuss the implications of our results within the context of different scenarios proposed for the evolution of these massive objects.Comment: 5 pages, 2 Figures. Accepted in ApJL. Minor changes from former submissio

    Superdense massive galaxies in the Nearby Universe

    Full text link
    Superdense massive galaxies (r_e~1 kpc; M~10^{11} Msun) were common in the early universe (z>1.5). Within some hierarchical merging scenarios, a non-negligible fraction (1-10%) of these galaxies is expected to survive since that epoch retaining their compactness and presenting old stellar populations in the present universe. Using the NYU Value-Added Galaxy Catalog from the SDSS Data Release 6 we find only a tiny fraction of galaxies (~0.03%) with r_e<1.5 kpc and M_*>8x10^{10} Msun in the local Universe (z<0.2). Surprinsingly, they are relatively young (~2 Gyr) and metal-rich ([Z/H]~0.2). The consequences of these findings within the current two competing size evolution scenarios for the most massive galaxies ("dry" mergers vs "puffing up" due to quasar activity) are discussed.Comment: Accepted for publication in ApJ Letters; 3 figure

    Velocity Dispersions and Stellar Populations of the Most Compact and Msssive early-Type Galaxies at Redshift similar to 1

    Get PDF
    We present Gran-Telescopio-Canarias/OSIRIS optical spectra of four of the most compact and massive early-type galaxies (ETGs) in the Groth Strip Survey at redshift z similar to 1, with effective radii R-e = 0.5-2.4 kpc and photometric stellarmasses M-star = (1.2-4) x 10(11)M(circle dot). We find that these galaxies have velocity dispersions sigma = 156-236 km s(-1). The spectra are well fitted by single stellar population models with approximately 1 Gyr of age and solar metallicity. We find that (1) the dynamical masses of these galaxies are systematically smaller by a factor of similar to 6 than the published stellarmasses using BRIJK photometry, and (2) when estimating stellarmasses as 0.7xM(dyn), a combination of passive luminosity fading with mass/size growth due to minor mergers can plausibly evolve our objects to match the properties of the local population of ETGs

    Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters

    Get PDF
    We present a homogeneous set of stellar atmospheric parameters (T-eff, log g, [Fe/H]) for MILES, a new spectral stellar library covering the range lambda lambda 3525-7500 angstrom at 2.3 angstrom (FWHM) spectral resolution. The library consists of 985 stars spanning a large range in atmospheric parameters, from super-metal-rich, cool stars to hot, metal-poor stars. The spectral resolution, spectral type coverage and number of stars represent a substantial improvement over previous libraries used in population synthesis models. The atmospheric parameters that we present here are the result of a previous, extensive compilation from the literature. In order to construct a homogeneous data set of atmospheric parameters we have taken the sample of stars of Soubiran, Katz & Cayrel, which has very well determined fundamental parameters, as the standard reference system for our field stars, and have calibrated and bootstrapped the data from other papers against it. The atmospheric parameters for our cluster stars have also been revised and updated according to recent metallicity scales, colour-temperature relations and improved set of isochrones
    • …
    corecore